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Abstract
Process mining (PM)-based goal recognition (GR) techniques, which infer goals or

targets based on sequences of observed actions, have shown efficacy in real-world engi-
neering applications. This study explores the applicability of PM-based GR in identifying
target poses for users employing powered transhumeral prosthetics. These prosthetics are
designed to restore missing anatomical segments below the shoulder, including the hand.
In this article, we aim to apply the GR techniques to identify the intended movements of
users, enabling the motors on the powered transhumeral prosthesis to execute the desired
motions precisely. In this way, a powered transhumeral prosthesis can assist individuals
with disabilities in completing movement tasks. PM-based GR techniques were initially
designed to infer goals from sequences of observed actions, where discrete event names
represent actions. However, the electromyography electrodes and kinematic sensors on
powered transhumeral prosthetic devices register sequences of continuous, real-valued data
measurements. Therefore, we rely on methods to transform sensor data into discrete events
and integrate these methods with the PM-based GR system to develop target pose recog-
nition approaches. Two data transformation approaches are introduced. The first approach
relies on the clustering of data measurements collected before the target pose is reached
(the clustering approach). The second approach uses the time series of measurements col-
lected while the dynamic user movement to perform linear discriminant analysis (LDA)
classification and identify discrete events (the dynamic LDA approach). These methods are
evaluated through offline and human-in-the-loop (online) experiments and compared with
established techniques, such as static LDA, an LDA classification based on data collected at
static target poses, and GR approaches based on neural networks. Real-time human-in-the-
loop experiments further validate the effectiveness of the proposed methods, demonstrating
that PM-based GR using the dynamic LDA classifier achieves superior F1 score and bal-
anced accuracy compared to state-of-the-art techniques.

Keywords: Goal recognition, transhumeral prostheses, process mining, human-in-the-loop
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1 Introduction
This research investigates the feasibility and effectiveness of applying process mining
(PM)-based goal recognition (GR) techniques to enhance the performance of powered
transhumeral prosthetics. A transhumeral prosthesis is designed to replace the miss-
ing anatomical parts of an arm below the patient’s shoulder. A powered prosthesis is
equipped with sensors and motors designed to recognize the user’s intentions and pro-
vide assistance. For instance, it can autonomously steer the artificial limb toward the
target prosthetic pose, supporting the patient in replicating functions of a natural arm.1

The state-of-the-art techniques for inferring target poses, such as Linear Discrimi-
nant Analysis (LDA) classifier [38] and deep learning-based classifier [13], have lim-
itations. The LDA classifier distinguishes target poses based on individual data points
rather than considering historical sequences of data points, thereby failing to utilize his-
torical information for inference. In turn, the deep learning-based classifier grounded
in the long short-term memory (LSTM) network requires a large training dataset. Con-
sequently, it is often challenging to instruct a subject to repeat the same movement
numerous times to generate sufficient training data. Additionally, the signal patterns
vary significantly between individuals [32], making it impractical to pool data from
multiple subjects for training a single model.

GR is a promising technique for assisting powered transhumeral prosthetic devices,
as it aims to infer the final (goal) state of an agent based on a sequence of their so far
observed actions. GR techniques have been successfully applied in a wide range of
scenarios, including robotics [8, 17], autonomous driving [1, 3], and human-machine
interaction [28]. This study investigates the possibility of using sensor data collected
by transhumeral prostheses to infer users’ intended poses and thus support the users
in reaching these poses. Once the goal is identified, it becomes feasible to plan a
smooth joint movement trajectory connecting the current position to the target pose.
This fosters better cooperation between the user and the prosthesis, leading to more
natural movements and, consequently, improving the efficiency of prosthetic use for
individuals with upper limb disabilities [19, 37, 38]. Accurately identifying the goal is
crucial for prosthesis movement control, as failure to achieve it can result in inefficient
task execution, user frustration, and potential device abandonment [10].

Despite the potential of GR, popular GR techniques often depend on human-defined
domain models. While these models perform well in synthetic domains, defining them
for complex real-world scenarios, such as the prosthetic domain, is challenging. In
contrast, PM-based GR automatically learns models from historical data, eliminating
the need for human-crafted models and making it well-suited for real-world applica-
tions [30]. The challenge of using PM-based GR techniques in the development of
powered transhumeral prostheses lies in preprocessing sensor-collected data to align
with the input format required by process discovery techniques. An input to a PM-
based GR technique consists of a sequence of actions, each captured as a discrete
event, for example “a movement from point A to point B” or “a completion of a task.”
These actions are described using discrete names or labels. In contrast, a powered
transhumeral prosthetic device registers high-frequency, continuous, real-valued sensor

1In this article, we use the terms “target pose” and “goal” interchangeably.
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signals, such as 0.05mV for electromyography signals, which measure the electric po-
tential generated by muscle cells, or 4.2-precision degrees for kinematic signals, which
measure the angle of the elbow joint. To implement a PM-based GR system over such
sensor measurements, we transform these measurements into discrete events. In our
previous work [32], the clustering-based data discretization method did not incorpo-
rate the target pose information associated with each trajectory, and it required access
to the complete dataset. Consequently, while we demonstrated that PM-based GR tech-
niques could address key challenges in prosthesis development, the proposed method
was less suitable for practical, real-world applications. In this article, we introduce
a linear discriminant analysis (LDA) classifier that can be pre-trained using historical
data. This approach enables the system to learn clustering criteria in advance, allowing
it to operate in real-time and interact dynamically with patients.

We evaluated our approach through two experimental settings: an offline exper-
iment and a human-in-the-loop (HITL) experiment. The HITL experiments intro-
duced in this paper are specifically designed to validate the method’s performance
in real-world scenarios, enabling humans to interact and collaborate with the pros-
thesis to complete a task. In the offline experiment, we used an existing dataset col-
lected for the development of powered transhumeral prostheses [32]. The dataset com-
prises data from ten non-disabled subjects. Each subject was instructed to perform
forward-reaching tasks involving three distinct elbow poses while the kinematic and
electromyography sensor data was collected. After data collection, a portion of the
data was used to train our GR system, while the remaining data was used as a testing
set to evaluate the accuracy of the goal inference. In the human-in-the-loop (HITL) ex-
periment, we invited another six non-disabled subjects to participate, instructing them
to grasp and relocate clothespins, as documented in [14, 19]. In the HITL experiments,
we used the same data collection method as in the offline experiment, and all the col-
lected data was used to train the GR system. To evaluate the quality of our GR system
inferences, we provided the trained system to the participants, allowing them to interact
with the prosthesis guided by our goal inferences in real-time (in a VR environment) to
complete the clothespin relocation tasks. Subsequently, we assessed the performance
based on how effectively the subjects could use the VR prosthesis device to execute the
tasks. During the online testing2, a subject may produce inputs that are sparsely cov-
ered by the training data due to the reactions of the subject to the real-time prosthesis
movement controlled by GR inferences. Thus, the HITL experiments are crucial and
serve as a robust measure for testing the effectiveness of the developed GR-enabled
powered transhumeral prostheses.

We compare the results against existing state-of-the-art baselines. The existing
LDA baseline [38] is trained using data collected only at target poses, without consid-
ering trajectories leading to them, referred to as the “static” LDA classifier. To improve
upon this, we modify the training data to include data points along the entire trajectory,
which we refer to as the “dynamic” LDA method. Experimental results show that
the dynamic LDA outperforms the static LDA classifier. Another baseline we used

2The human-in-the-loop experiment and the online experiment both refer to experiments conducted in
a real-time setting. In these experiments, the subject interacts with the prosthetic device to collaborate and
complete tasks. Therefore, in this paper, the terms “human-in-the-loop experiment,” “online experiment,”
and “real-time experiment” are used interchangeably and share the same meaning.
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is the long short-term memory (LSTM) neural network-based target pose recognition
approach [13]. Thus, we used three baselines: static LDA, dynamic LDA, and LSTM.

The offline experiments revealed that two techniques stand out as the most effec-
tive: dynamic LDA and the PM-based GR technique with the LDA classifier used for
data discretization (our new approach). Specifically, our approach achieved the highest
balanced accuracy, while dynamic LDA achieved the highest F1 score. Subsequently,
human-in-the-loop (HITL) experiments assess the real-time practicality of the two top-
performing techniques selected from the offline experiments. In these online experi-
ments, our PM-based GR with LDA classifier achieved significantly higher F1 scores
and balanced accuracy than the dynamic LDA approach.

This article is an extended version of our conference paper [32], which made the
following contributions:

1. An extension of the data-driven approach for GR grounded in process mining tech-
niques [26, 30] to scenarios where multi-dimensional, real-valued, continuous mea-
surements characterize the behavior of the observed agent.

2. The results of an evaluation based on open-source implementations of several state-
of-the-art GR systems3, including the PM-based system, over a publicly available
dataset 4 in the domain of transhumeral prostheses which confirm that the PM-based
system achieves significantly superior performance.

Our previous work relied on clustering to handle multi-dimensional, real-valued, con-
tinuous measurements, which limited its applicability in real-time settings due to the
need to access the complete dataset. In this article, we aim to improve the method by
using a pre-trained classifier, enabling online application through real-time interaction
with patients performing tasks. Human-in-the-loop (HITL) experiments are conducted
to evaluate the technique’s performance in real-world task interactions.

Concretely, this article provides these additional contributions:

1. An enhanced version of the state-of-the-art LDA approach to goal inference, tai-
lored for scenarios where trajectories of signals are available. Specifically, a novel
dynamic LDA method is introduced as an extension of the classic LDA method to
handle movement trajectories. Offline experiments demonstrate that dynamic LDA
surpasses the static approach in performance.

2. An improved iteration of the PM-based GR approach, incorporating an LDA clas-
sifier to convert signals into event labels. Our offline experiments show that this en-
hanced approach achieves superior performance compared to the method utilized in
the conference paper and comparable performance with the dynamic LDA approach.

3. Human-in-the-loop (HITL) experiments to assess the two best-performing approa-
ches identified in the offline setting: the dynamic LDA technique and the PM-based
GR with LDA classifier. The results indicate that the PM-based technique outper-
forms dynamic LDA, aiding users in achieving their goals more rapidly. This under-
scores its potential to facilitate natural movements for users.

3https://doi.org/10.26188/24131493
4https://doi.org/10.26188/23294693
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All experimental datasets5 and implemented approaches6 have been made publicly
available. The next section provides the necessary background on PM-based GR and
our transhumeral prosthetic studies and experiments. Then, Section 3 discusses related
work. Section 4 presents our approaches to goal inference, while Section 5 presents the
conducted experiments and their results. Section 6 discusses the limitations of the cur-
rent techniques and future work aiming to address these limitations. Finally, Section 7
states the concluding remarks.

2 Background
This section presents background on the PM-based GR (Section 2.1) and the con-
ducted prosthetic experiments, including the offline and HITL experimental settings
(Section 2.2).

2.1 Process Mining-Based Goal Recognition
Given a collection of candidate goals and observations of actions performed by an agent
in an environment, a solution to the goal recognition (GR) problem suggests the true
goal the agent strives to achieve [23]. Process mining (PM) techniques were recently
used to implement a system for solving the GR problem [26, 30]. We refer to this
system as the PM-based GR system.

PM-based GR system uses process discovery [18] to construct process models from
the sequences of historical actions the agent used to achieve the candidate goals in the
past. Specifically, each model is constructed from the historical observations of how
the agent reached a certain candidate goal and, thus, represents the standard behavior
for achieving the goal. In process mining, an executed action is referred to as an event,
while a sequence of executed actions is called a trace. With the process models at
hand, one per possible goal, the PM-based GR system uses conformance checking [33]
to align a newly observed action sequence—a trace—with each discovered model. Fi-
nally, the commonalities and discrepancies found between the observed trace and each
model induce a probability distribution over the candidate goals representing the likeli-
hood of each goal being the one the agent is pursuing. As the PM-based GR technique
comprises constructing process models from historical data (collections of observed
traces toward the various goals, called event logs) and conformance checking between
newly observed traces and the constructed models, it is a data-driven GR technique.

2.2 Prosthetic Experiments
This paper conducts a two-step study that consists of (i) offline experiments for al-
gorithm development and (ii) human-in-the-loop (HITL) prosthesis movement control
experiments employing the developed algorithm. This two-step approach is commonly
employed in the literature of powered prostheses [10]. We first utilize pre-collected

5https://doi.org/10.26188/25488130
6https://doi.org/10.26188/25487290
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body movement and muscle activity datasets from non-disabled human subjects to de-
velop an accurate and robust GR algorithm based on offline experiments. Then, we
deploy the algorithm to control the prosthetic device in real-time based on the inputs
generated by human users that are impacted by the HITL control mechanisms.

The distinction between offline and HITL experiments is whether the subjects in-
teract with the powered prosthesis. In offline experiments, measurements are taken as
non-disabled subjects reach goals with their intact limb without interacting with the
prosthesis. This dataset is collected to inform the development of the GR system. In
HITL experiments, real-time measurements are used by the developed GR system to
recognize the goal. The motors then drive the prosthesis to the recognized goal (pose),
which closely aligns with the intended real-life use of the prosthetic device. In a HITL
experiment, the subject interacts with the prosthesis by experiencing its movement and
adjusting their joint and muscle movements accordingly. These “interactions” between
the prosthesis and the user can lead to inputs to the GR system that are substantially
different from those captured in the offline dataset. HITL experiments thus support
testing the robustness of the developed GR system. Additionally, doubts exist in the
literature regarding the correlation between offline and HITL performance [12, 21, 24],
highlighting the need for HITL experiments to justify the efficacy of the developed
powered transhumeral prostheses.

2.2.1 Offline Experiments

The dataset for offline experiments was collected as non-disabled subjects extended
their intact upper limbs forward to reach three goal elbow positions repeated at three
shoulder flexion/extension poses. The goals (target elbow poses) are denoted as T1,
T2, and T3 in Fig. 1a, which illustrates the side-view schematic of the upper limb.
The dataset captures the above-elbow joint movements and muscle activities through
motion trackers and surface electromyography (sEMG) sensors, respectively, with 12
joint kinematic movement features and 35 sEMG features extracted at a rate of 10
Hz (the measurements were taken every 0.1 seconds). The motion trackers determine
their position and rotation using infrared (IR) distance sensors and embedded inertial
measurement units (IMUs), enabling the resolution of joint kinematics. The sEMG
sensors are adhered to the skin above the target muscles, with their electrodes detecting
the electrical signals generated by the muscles during muscle contraction. The process
of extracting the features has been described in detail in previous work [38].

The sensor placements and the virtual avatar in VR are shown in Figs. 1b and 1c,
respectively. The virtual avatar serves as the visual representation of the user’s presence
in VR, enabling interaction with the virtual environment, such as reaching the virtual
target. To capture the residual limb joint kinematics, three HTC VIVE trackers were
strategically positioned at the upper arm (UA), shoulder acromion (SA), and trunk
(TR). The displacement and velocity of the six degrees of freedom (DoF) shoulder and
trunk movements were extracted as features. An additional tracker was placed on the
forearm (FA) to acquire the elbow joint kinematics. A controller was held in the hand
to move the hand avatar shown in Fig. 1c. For monitoring the muscle activity, seven
Trigno™ wireless sEMG electrodes by Delsys® were attached to the muscles of the
dominant upper arm. Each electrode produces five features.
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(a) (b) (c)

Figure 1: Offline dataset collection setup: (a) target shoulder and elbow poses; T1–T3
denote three goals, (b) experimental setup and the placement of VIVE trackers and
sEMG electrodes, and (c) VR avatar showing target example (side view).

For each goal, the subjects were tasked with 30 iterations of the forward-reaching.
They were instructed to keep their final upper limb pose for one second upon reaching
the goal. The data spanning from the initiation of the movement to the end of the
holding period were reserved for feature extraction.

2.2.2 Human-In-The-Loop Experiments

In the HITL experiments, a real-world task is assessed in the VR environment, where
subjects are asked to pick up and relocate clothespins by controlling a virtual powered
prosthesis in real-time. The prosthesis is attached to their dominant side, as depicted
in Fig. 2a. Such a task involves three prosthetic DoFs: elbow flexion/extension, wrist
pronation/supination, and hand open/pinch. It is worth noting that this task involves
different target poses (goals) compared to the offline experiment. Therefore, a different
training dataset is first collected from the subject executing the clothespin relocation
task to construct the GR system, followed by the HITL experiment. The training dataset
involves the same features as in the offline experiment and consists of 10 iterations of
data collection phases when the subject performs the clothespin relocation task using
the avatar as displayed in Fig. 1c.

For real-time GR, features are extracted at a rate of 10 Hz and streamed as inputs
to the GR system for controlling the prosthetic elbow and wrist movement. The hand
open/pinch function typically requires a dedicated control algorithm or GR system sep-
arate from joint control due to the temporal sequence of gross arm movement and hand
manipulation [2]. Thus, a switching mechanism is needed to transition between the
two control algorithms, e.g., switching to hand control when detecting the upper limb
joints are at rest [2]. In this work, to isolate the effects of switching between control
algorithms, the hand open/pinch function is controlled through a button held in the non-
dominant hand, as described in [19]. The socket of the prosthesis tracks the movement
of the UA tracker and connects the prosthesis to the subject’s residual limb. The sensor
setup mirrors the one used in the offline evaluation. Twelve more kinematic features
are investigated, comprising the acceleration of the six DoF movements used in the
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(a) (b) (c)

Figure 2: Human-in-the-loop experiment setup: (a) virtual 3-DoF prosthesis avatar, (b)
forward stage of the RCRT task, and (c) backward stage of the RCRT task; numbers
indicate goals (intended movements) with red solid and dashed arrows demonstrating
the movement paths, letters A to D show the relocation positions, and “O” represents
the arm resting position (upper-arm pointing downwards).

offline experiments and the kinematics of two additional DoFs, which are essential to
extend the workspace from a plane (Fig. 1a) to a 3-dimensional space.

The HITL experiments adhere to the widely used Refined Clothespin Relocation
Task (RCRT) documented in [14, 19], with a dedicated one-to-one scale virtual setup.
The task comprises eight kinds of movements, representing eight distinct goals, ac-
complished in two stages. In the forward stage, see Fig. 2b, the subjects begin from
the upper-arm resting and pointing downwards (denoted as “O” in Fig. 2b). They then
sequentially pick up the two clothespins placed vertically on the horizontal rod (posi-
tions A and B) and transfer them to the vertical rod (positions C and D). Subsequently,
in the backward stage, they start from the resting position and then return the clothes-
pins at positions C and D to the original positions A and B, see Fig. 2c. The desired
movements and goal categories are marked using red arrow lines and corresponding
numbers; solid lines are used to depict desired movement trajectories in the forward
stage, while dashed lines capture the desired movement trajectories for the backward
stage of the experiment. From a GR perspective, which typically focuses on distin-
guishing different goals from the same initial state, the eight movement trajectories
present three GR challenges: identifying whether the subject aims for A or D from
initial position O; identifying whether the arm is moving toward C or D from position
B; and identifying whether the movement is toward A or B from position C.

3 Related Work
Existing approaches in GR can be classified into three principal categories: the plan
library-based GR approaches [16], the planning-based GR approaches [7, 27], and the
data-driven GR approaches [22, 26, 30]. A plan library-based GR approach relies on

9



pre-defined libraries of plans, usually crafted by domain experts, designed to encode
how candidate goals are meant to be achieved. Such a method works by comparing
the observed agent’s actions with the plans from the libraries. A planning-based GR
approach uses automated planning techniques, or planners, to generate optimal plans
for achieving candidate goals.7 These planners usually rely on well-defined domain
models that describe the environment in which the agent operates, the actions the agent
can perform, and the effects of these actions. Once optimal plans for achieving the
candidate goals are generated, the method compares them with the action sequence
performed by the agent to assess how closely the agent’s actions align with the gener-
ated plans. If the observed actions closely match an optimal plan, the goal achieved
by executing that plan is considered as a likely goal the agent is aiming for. Finally,
data-driven approaches utilize historical data of agents’ actions to learn models that de-
scribe the principles for achieving the goals. When deducing likely goals, they leverage
patterns and trends identified within the learned models to guide their inferences.

In the field of powered transhumeral prosthetics, existing literature has demon-
strated that using varied features customized for individual subjects enhances the accu-
racy of identifying intended movements [37]. Such customization introduces complex-
ity into the development of ideal plan libraries or domain models, necessitating unique
plans or models for each subject. Data-driven GR techniques are well-suited for these
customizations, as they can learn personalized patterns from the historical behavior of
a patient to make more accurate goal inferences tailored to the individual.

Min et al. [22] proposed a GR approach based on LSTM neural networks. Once
a network is trained on historical data, the approach identifies the most likely goal of
the agent based on a newly observed sequence of actions performed by the agent. The
PM-based GR system uses process discovery techniques to learn process models that
describe the skills for accomplishing the candidate goals from the historical sequences
of the agent’s actions. Subsequently, it relies on conformance checking techniques to
examine commonalities and discrepancies between a newly observed sequence of ac-
tions and each learned model. These commonalities and discrepancies are then trans-
lated into a probability distribution over the candidate goals, capturing the likelihoods
that the actions aim to reach these goals [26, 30]. Both the LSTM network-based GR
and the PM-based GR techniques are data-driven, as they rely on the analysis of data
generated by actions performed by the agent.

Machine learning techniques have been used to implement accurate prosthesis con-
trol [29]. Due to their robustness, machine learning classifiers are commonly imple-
mented in upper-limb prostheses [9]. Given an input signal from sensors, a classi-
fier predicts the output signal and the intended movement of the patient. Linear dis-
criminant analysis (LDA) is probably the most commonly used classifier algorithm in
prosthesis control, also used in gesture recognition scenarios via Myoelectric inter-
faces [15, 20]. Due to the lightweight and low-complexity nature of the LDA classifier,
it can achieve high control accuracy with short training and processing times [25]. In
our recent work, we confirmed that LDA can discriminate target poses reliably [37].
Recent works explore the use of artificial neural networks in prosthesis control. Neural

7The term “candidate goals” refers to a collection of possible goals from which GR techniques need to
identify the most likely goal(s) that the agent aims to achieve.
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networks achieve high recognition accuracy as they can learn complex dependencies
between signal input and control outputs but require extensive training [29]. For in-
stance, Huang et al. [13] successfully used LSTM neural networks to predict target
poses based on time series of electromyography signals.

The existing approaches for detecting target poses based on LDA classifiers ig-
nore the movement trajectory and rely only on signals registered at the target poses,
which may lead to inferior recognition accuracy [37]. Meanwhile, the LSTM network-
based approaches typically require large amounts of training data for reasonable per-
formance [22]. Considering the need for individual customizations of GR inferences in
the domain of transhumeral prostheses [37], it may be challenging to obtain sufficient
volumes of training data from an individual subject. The PM-based GR approach, on
the contrary, leverages data acquired along entire movement trajectories for training
and can be less data-demanding [32].

This research aims to explore how the PM-based GR system can contribute to the
development of powered transhumeral prostheses. Our previous work [32] demon-
strated that combining clustering and PM-based GR techniques could address chal-
lenges in prosthesis development. This study improves the method by incorporating
a pre-trained classifier, enabling the technique to be applied in real-time and interact
with patients to complete tasks. We use LDA [37] and LSTM [13, 22] techniques as
performance baselines. The evaluation is conducted both offline and online. In the
offline setting, the evaluated GR techniques are compared using the pre-recorded data.
In the online setting, we evaluate the performance of the GR techniques using human-
in-the-loop control assessment. Hence, we address the concern raised in the literature
considering the conflicting results regarding the performance correlation of the two
conditions [12, 21, 24].

4 Approach
This section introduces two GR approaches based on process mining techniques for
addressing the target pose recognition problem in the transhumeral prosthesis scenario
(Section 4.1). One PM-based GR approach integrates hierarchical clustering and K-
means clustering algorithms for feature selection and event discretization. The other
approach involves segmenting the trajectory of data measurements and training an LDA
classifier to distinguish data points for each segment, thereby discretizing the corre-
sponding data points. Additionally, this section introduces a new Linear Discriminant
Analysis (LDA) classifier for mapping sensor data to target poses (Section 4.2).

4.1 Goal Recognition Using Process Mining
The PM-based GR framework was proposed in our previous works [26, 30]. In this
article, we extend it to allow goal inference based on sensor data, such as data gener-
ated by sEMG and kinematic movement sensors used to inform powered transhumeral
prostheses. To apply the PM-based GR technique to the transhumeral prostheses sce-
nario, we introduce a step to convert continuous, real-valued sensor data into discrete
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events. These converted event sequences are then used as input for the training and in-
ference phases of the PM-based GR. These event sequences are commonly referred to
as traces in process mining, and traces that lead to the same goal are typically collected
in an event log. A PM-based GR system learns knowledge models from event logs that
describe ways for accomplishing candidate goals. Specifically, a knowledge model is
a process model that captures sequences of actions that, when executed, should lead
to the accomplishment of a specific goal. Traces from an event log for a certain goal
are used as input to a process discovery algorithm to construct a process model that
represents but also generalizes the possible sequences of actions to achieve the corre-
sponding goal, thereby describing the “skills” for achieving the goal. In this work, we
use Directly Follows Miner [18] as a process discovery algorithm and represent the
discovered models as Petri nets.

To recognize goals, a PM-based GR system performs conformance checking, which
involves a set of techniques designed to efficiently compare and analyze differences be-
tween a trace and a process model. When a trace is provided as input to the GR system
for inference, it is compared to the historical behavior captured in each discovered pro-
cess model. Specifically, optimal alignments are constructed between the trace and
each model. An optimal alignment reflects a closest match between the trace and the
model, describing the commonalities and discrepancies between the two. An alignment
can be represented as a table with two rows, where the top row specifies the trace and
the bottom row captures a closest matching trace described by the model. Such a table
provides a systematic way of comparing the actions in the two traces. Each column of
the table defines a move in the alignment, with the presence or absence of a skip symbol
“≫” indicating whether the move is asynchronous or synchronous, respectively.

Table 1: An example alignment.

move 1 move 2 move 3
observation action A ≫ action B

model trace action A action C ≫

Table 1 shows an example alignment between a sequence of observed actions
⟨action A, action B⟩ (refer to the top row in the table) and model trace ⟨action A, action C⟩
(bottom row). The example alignment has three moves (three columns). In a syn-
chronous move, both sequences progress by executing the same action. In move 1 (first
column), for instance, both sequences execute action A. In an asynchronous move, an
action from one sequence is not matched by an action from the other sequence, which
is denoted by the skip symbol. If the skip symbol appears in the observation row, such
as in move 2 in Table 1 (second column), then the corresponding action in the model
trace is not matched by observed actions; in the example, action C in the model trace
is not matched by an action in the observation row. If the skip symbol appears in the
model trace row, such as in move 3 in the example alignment (third column), then the
corresponding action in the observed sequence of actions has no matching action in the
model trace; in the example, observed action B has no matching action in the model
trace. If one assigns a positive cost to every asynchronous move and no cost to all syn-
chronous moves, then an optimal alignment between a sequence of observed actions
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and a process model is an alignment between this observed sequence and some trace
described by the model that yields the minimal cost, where the cost of an alignment is
the sum of costs of all its moves.

Given optimal alignments between the input sequence of actions and each discov-
ered process model (one model per candidate goal), the PM-based GR system computes
the weight of each alignment by analyzing the types and patterns of moves within
the alignment. While alignment cost serves as the basis for discovering alignments
with minimal structural discrepancies between the compared traces, alignment weight
quantitatively indicates the extent to which the observed trace aims to achieve the cor-
responding goal [30]. This alignment weight between trace τ and process model MG

for goal G is defined as follows:

ω(τ,MG) = ϕ + λm ×

n∑
i=1

(
i δ × c(τ,MG, i)

)
. (1)

In Eq. (1), the term c(τ,MG, i) represents the cost of the move in the optimal alignment
between τ and MG at position i. To handle partially observed input sequences of ac-
tions toward goals, when computing alignment weights, we assign a cost of one to all
asynchronous moves with the skip symbol in the model trace and a cost of zero to all
other moves. The length of the optimal alignment is denoted by n. The constant term ϕ
is a smoothing factor, aiming to mitigate overconfidence in inferring the goal during the
initial stages of movement, especially when the sensors have only collected a limited
number of data points. The discount factor δ amplifies the importance of later asyn-
chronous moves by giving more weight to recent moves in the alignment. Moreover,
the parameter λ ≥ 1 functions as a penalty for consecutive asynchronous move suffixes
in the alignment. This penalty is applied when there are m consecutive asynchronous
moves that are not matched by the actions in the model trace at the end of the align-
ment. In this work, when computing alignment weights, we use default parameters of
ϕ = 50, λ = 1.5, and delta = 1. To ensure consistent analysis, the same parameter
settings must be used when checking the conformance between an input trace and all
the process models. For more details on the computation of alignment weights, see our
previous work [30].

Given the weights of alignments between the input observed sequence of actions
and all the discovered process models, the PM-based GR system computes the proba-
bility distribution over the candidate goals. The probability of each goal indicates the
likelihood that the input sequence of actions aims to achieve that goal. Based on this
distribution, the PM-based GR system then constructs and returns the set of most likely
goals as the inference result. Specifically, the probability of achieving candidate goal
G based on the input sequence of actions τ is computed as follows [30]:

Pr(G | τ) =
e−β×ω(τ,MG)∑

G′∈G
e−β×ω(τ,MG′ )

. (2)

In Eq. (2), G is the set of all candidate goals and β is the level of trust in the “learned”
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process models, which is defined as follows:

β =
1

1 + min
G ∈G
ω(τ, MG)

. (3)

In this work, we aim to recognize the intended pose of a subject based on multi-
dimensional, real-valued features collected by sensors. We use two data conversion
approaches to transform the sensor data into traces of events. The first approach that
uses clustering, for instance, hierarchical clustering or K-means clustering, was pre-
sented in our previous work Section 4.1.1. The second approach, involving training an
LDA classifier leveraging the target pose information in the training data, is new and is
presented in Section 4.1.2.

4.1.1 Process Mining-Based Goal Recognition Using Clustering

In this section, we use a running example to illustrate how the PM-based GR framework
combines feature selection and event discretization techniques to tackle the target pose
prediction problem. In the example, we instructed a subject to perform six iterations of
reaching tasks, three times to reach target T1 and three times to reach target T2. The
GR system observed six sequences of signals, each comprising 30 continuous real-
valued features (including sEMG signals and kinematic signals), denoted as f1 to f30.
Traces 1 to 3 represent signal sequences recorded during movements toward target pose
T1, while traces 4 to 6 represent sequences for movements toward T2. The dataset of
input signal sequences and tools for reproducing the results are publicly available.8

Table 2 presents an extract of the example dataset, with each row containing collected
feature values ordered by their respective timestamps of data collection. In the table,
each row characterizes an action from the trace with the identifier specified in the Trace
column that aims to accomplish the goal specified in the Goal column.

Table 2: Extract of the running example dataset.

Trace Goal f1 f2 f3 . . . f29 f30

1 T1 5.19727337 7.02395793 0.00254431 . . . 5.39759498 -0.3722619
1 T1 7.76278776 8.08816201 0.00472689 . . . 1.01557531 1.37592798
1 T1 13.4185557 8.87159453 0.00821896 . . . -4.0004147 1.65328609
1 T1 22.0916619 9.04377674 0.01015369 . . . -5.5399488 -1.7805512
1 T1 31.3641039 9.3586209 0.009165 . . . -3.5156837 1.36367015
1 T1 38.2312577 10.139119 0.00616715 . . . -1.4720033 5.87820456
1 T1 42.0592085 10.8827908 0.00315491 . . . -0.3338844 4.29640897
2 T1 7.39110795 6.07336937 0.00064332 . . . 2.92403705 1.46698529
2 T1 10.5229866 7.44734189 0.00194998 . . . 1.60034347 2.94734496
2 T1 17.6705947 8.62902577 0.00393832 . . . 1.41373702 2.84419105

. . . . . . . . . . . . . . . . . . . . . . . .
6 T2 53.1712171 19.394227 0.00270796 . . . -3.5619104 0.78601719
6 T2 60.1200614 22.6060167 0.00091891 . . . -2.6239834 1.7355157
6 T2 64.1830578 25.2975943 -0.0003433 . . . -1.1970367 0.92412363
6 T2 66.8916142 27.5304609 -0.0017204 . . . 0.31022101 0.95595258

The PM-based GR approach that uses clustering for event discretization comprises
five steps. Next, we present these steps.
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Figure 4: Dendrogram and selection of clusters. The red dotted line represents the
threshold used to cut the dendrogram to form 15 clusters.

Step 1: The first step involves reducing the dimensionality of the input data by select-
ing features that have a substantial predictive power. Specifically, we exclude highly
correlated features. First, we compute correlations between each pair of features in the
dataset. Figure 3 summarizes the absolute values of the Pearson correlation coefficients
for all pairs of features. Then, we use agglomerative hierarchical clustering [6] to group
features into N f clusters using correlation coefficients to define distances between the
features. The resulting dendrogram, see Fig. 4, provides a visual representation of the
hierarchical structure of the computed clusters based on the correlations from Fig. 3.
One can use a threshold value to determine the number of clusters they want to extract
from the dendrogram. The similarity threshold specifies the desired distance between
formed clusters. As shown in Fig. 4, in our example, setting the threshold to 1.23 (see
the red dashed horizontal line in the figure) allows us to extract 15 clusters; groups
of features connected below the threshold are considered as one cluster, while groups
of features above the threshold are separate clusters. From each extracted cluster of
features, we then select one representative feature with the largest correlation with all

8https://doi.org/10.26188/25487290
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the other features in the cluster. The selected features constitute a lower-dimensional
representation of the dataset. In the running example, we reduced the feature space to
N f = 15 dimensions; the selected 15 features are highlighted in red in Fig. 4.

An extract of the reduced dataset is displayed in Table 3.

Table 3: Extract of the reduced running example dataset.

Trace Goal f3 f6 . . . f27 f30 Event
1 T1 0.002544311 0.121301538 . . . 9.057075924 -0.372261852 e0

1 T1 0.004726894 0.210557727 . . . 10.55266625 1.375927982 e6

1 T1 0.008218956 0.391712037 . . . 4.416704571 1.653286092 e5

1 T1 0.010153689 0.327711654 . . . 1.372325318 -1.780551234 e2

1 T1 0.009165 0.311548058 . . . 5.526959903 1.363670147 e5

1 T1 0.00616715 0.734098175 . . . 8.869853729 5.87820456 e6

1 T1 0.003154906 1.227944362 . . . 4.916643199 4.296408971 e8

2 T1 0.000643317 0.103164637 . . . 12.86040763 1.466985286 e8

2 T1 0.001949978 0.336630569 . . . 13.45204634 2.94734496 e6

2 T1 2.00E-05 2.91E-05 . . . 0.65070719 88.8458582 e2

. . . . . . . . . . . . . . . . . . . . . . . .
6 T2 3.47E-05 1.25E-05 . . . 0.16984547 90.8573749 e1

6 T2 3.85E-05 1.06E-05 . . . 0.30483842 50.9656092 e1

6 T2 -0.000343322 0.410761081 . . . 23.78469914 0.924123631 e4

6 T2 -0.001720367 0.504684583 . . . 21.08908217 0.955952575 e3

Step 2: Next, we convert the reduced dataset into event traces. An event trace is a
sequence of discrete events, each identified by a label (shown in the last column of
Table 3), referring to the same trace identifier and ordered by their timestamps. In
contrast, the corresponding original trace consists of feature values at each timestamp,
represented as a set of real numbers. To convert a trace into an event trace, we perform
K-means clustering [11] over N f -dimensional data points to obtain Nc clusters. The K-
means algorithm groups similar data points together to minimize the variance within
each cluster and maximize the distance between different clusters. Within each cluster,
the data points are considered as instances of the same event.

The K-means algorithm takes the number of clusters it constructs as input. The
approach we use to determine the appropriate number of clusters is elaborated in Sec-
tion 5. For the purpose of demonstration, in the running example, we use Nc = 10.
Consequently, the 15-dimensional data points are grouped into 10 clusters, represented
by events e0 to e9, as shown in the “Event” column in Table 3. Then, we split the
obtained traces of events into event logs, where each event log contains all the traces
toward a specific candidate goal. As there are two target poses in the running example,
we split the traces into two event logs: L1 and L2. The traces in the event logs L1 and
L2 aim towards target poses T1 and T2, respectively.

Step 3: In this step, we use process discovery techniques to construct process models
from the event logs obtained in the previous step. Figures 5 and 6 depict Petri nets
M1 and M2 constructed using Directly Follows Miner [18] from event logs L1 and L2,
respectively. Models M1 and M2, hence, describe the processes for reaching target
poses T1 and T2, respectively. They constitute“knowledge” learned from historical
experiences stored in our GR system.

Step 4: Next, we use conformance checking techniques [33] to assess the commonali-
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ties and discrepancies between the discovered models and observed traces, leveraging
this information to infer the intended target poses. It is important to note that clustering
approaches, like K-means, do not inherently generate classification models for origi-
nal traces of sensor measurements. In the running example, we choose a sequence of
signals from Table 4 as the testing trace. Each signal is a multi-dimensional data point
comprising real-valued measurements of various sEMG and kinematic features. The
testing trace is partial, containing only the first six measurements representing move-
ment toward a target pose. This partial trace simulates the condition when the patient
has commenced the movement but has not yet reached the target pose.

Table 4: An example partial sequence of signals observed by the GR system.

Timestamps f1 f2 f3 . . . f29 f30

1 6.003909937 7.491469679 -0.000426667 . . . 3.003725052 1.044722093
2 10.4000259 8.661748533 0.002236012 . . . -1.678683223 1.119218147
3 18.34086353 9.394745911 0.005143733 . . . -4.419588229 0.414732289
4 31.05712269 10.02530957 0.006663839 . . . -5.512023759 -0.470670561
5 45.26542356 11.12347556 0.005400478 . . . -5.503936393 -0.967709384
6 56.95525497 13.56039176 0.002532783 . . . -4.995283183 1.20365095

Given all the historical traces used for training process models, as shown in Table 2,
and the testing trace, as shown in Table 4, the GR system extracts features following
the approach outlined in step 1 and converts the multi-dimensional data points into
discrete events by applying K-means clustering to all data points from both the training
and testing traces, as described in step 2. The obtained discrete events are ordered
according to their timestamps into evet traces. In our running example, the testing
trace is converted into trace τ as follows:

τ = ⟨e8, e6, e2, e1, e1, e9⟩ .

Given trace τ and process models M1 and M2 discovered in the previous step, the GR
system computes optimal alignments σ1 and σ2 between the trace and the models.
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The constructed optimal alignments are shown below. The transitions of M1 and M2
involved in the alignments are shaded in gray in Figs. 5 and 6.

σ1 =
τ e8 ≫ e6 e2 e1 e1 e9

M1 e8 e8 ≫ ≫ ≫ ≫ ≫

σ2 =
τ e8 e6 e2 e1 e1 e9 ≫ ≫ ≫

M2 e8 e6 ≫ e1 e1 e9 e4 e3 e3

Step 5: Finally, in the last step, the PM-based GR system leverages information on
moves in the constructed optimal alignments to calculate the probability distribution
over the candidate target poses. The probabilities associated with each target pose
indicate the likelihood of the subject aiming to reach that pose. To compute the prob-
ability distribution, the system first computes alignment weights between trace τ and
models M1 and M2 according to Eq. (1). Then, it uses Eqs. (2) and (3) to compute the
probability of reaching every target pose. In our running example, given the two align-
ments σ1 and σ2, the probabilities of the subject that induced trace τ aiming to reach
target poses T1 and T2 are 0.06 and 0.94, respectively. Consequently, the PM-based
GR system infers that the subject aims to reach T2.

4.1.2 Process Mining-Based Goal Recognition Using LDA Classifier

This section describes an alternative labeling technique utilizing a trained LDA classi-
fier to assign labels to signals. An LDA classifier can map multi-dimensional values to
particular categories. We assume that the data points in the trajectories can be divided
into sub-groups based on their timestamps. For example, data points collected early
in the trajectory may differ significantly from those collected later. Therefore, we aim
to divide the data points into sub-groups according to their time order and then train
an LDA classifier to identify which sub-group a data point belongs to. This approach
allows the classifier to distinguish whether a data point was collected in the early or
late stage of the trajectory. Once trained, the classifier is applied to convert multi-
dimensional, real-valued signals into discrete labels (or events). The subsequent steps
are the same as steps 3–5 outlined in Section 4.1.1. Specifically, we proceed by creating
event logs of event traces toward various goals and use a process discovery technique to
construct process models. With these process models, we conduct conformance check-
ing to construct optimal alignments between the process models and a newly observed
trace of actions. Finally, we utilize these optimal alignments to compute a distribution
over candidate goals and to infer the most likely intended poses.

We use another running example to illustrate the PM-based GR approach based on
an LDA classifier. In this example, we start with 20 signal sequences recorded toward
target poses T1 and T2, with 10 signal sequences per target pose.9

Next, we present the four steps of the PM-based GR approach that uses an LDA
classifier for event discretization.

9The code and data for replicating this running example can be accessed here: https://doi.org/10.
26188/25487290.
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Step 1: In this step, signals of measurements are converted into discrete events, which
is achieved by training an LDA classifier. During the training phase, we label the data
points according to two aspects: the part of the trajectory the data points relate to and
the final target pose reached by the corresponding movement. For instance, consider
a sequence of signals illustrated in Fig. 7, which eventually reaches target pose T2.
During the movement, 10 data points are collected. We divide the sequence into five
segments based on the timestamps of the collected data points. Note that the number
of segments to use is a parameter, and for illustration purposes, we use five segments
in our example. We then assign each data point a label of the format TxPy, where Tx
is the target pose that is reached by the sequence of signals the data point belongs to
and Py is part of the trace the data point is located at. For example, the first part of the
sequence of signals from Fig. 7 capturing the initial phase of the movement contains
two data points. Consequently, these data points are assigned label T2P1.

1 2 3 4 5 6 7 8 9 10

f1 = 6.25402493e+01
f2 = 1.46930070e+01
f3 = 2.55885810e-02

f29 = -3.18948321e+00
f30 = 3.47862122e+00

f1 = 5.83626273e+01
f2 = 1.27482990e+01
f3 = 2.79415200e-02

f29 = -3.54162505e+00
f30 = 2.01989220e+00

f1 = 5.16789910e+01
f2 = 1.00969709e+01
f3 = 3.36690810e-02

f29 = -3.95473794e+00
f30 = -8.22095308e+00

f1 = 4.13741586e+01
f2 = 8.29305356e+00
f3 = 3.99410700e-02

f29 = -5.38287018e+00
f30 = -9.00253224e+00

f1 = 2.83165799e+01
f2 = 8.05454274e+00
f3 = 4.04488200e-02

f29 = -8.50479939e+00
f30 = 1.66378049e+00

f1 = 1.53833019e+01
f2 = 7.82310097e+00
f3 = 3.39896200e-02

f29 = -1.17645335e+01
f30 = 8.78627228e+00

f1 = 6.50117769e+00
f2 = 6.68230991e+00
f3 = 2.56392130e-02

f29 = -8.18511160e+00
f30 = 9.10489343e+00

f1 = 3.38516072e+00
f2 = 5.18939244e+00
f3 = 1.98317980e-02

f29 = -1.02799324e+00
f30 = 2.76320280e+00

f1 = 3.80321884e+00
f2 = 3.55905184e+00
f3 = 1.70687740e-02

f29 = 3.09162389e+00
f30 = -2.50493140e-02

f1 = 4.03750417e+00
f2 = 2.38497163e+00
f3 = 1.56551410e-02

f29 = 4.94320441e+00
f30 = 5.89258273e-01
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Figure 7: Labeling a sequence of signals.

Once all the data points are labeled, we use the obtained labels to train an LDA classi-
fier. Once we obtain this classifier, we use it to convert the original multi-dimensional
signals into discrete labels representing events. We then group the obtained events into
event traces, where each trace captures all events from one movement toward a target
pose. The traces are then grouped into event logs, where each event log contains all the
constructed traces to a particular goal. In the running example, 20 sequences of signals
are converted into two event logs L′1 and L′2, as shown below:

L′1 = {⟨T2P1,T1P1,T1P2,T1P2,T1P3,T1P4,T1P5,T1P5⟩,
⟨T2P1,T1P1,T1P1,T2P1,T1P2,T1P2,T1P3,T1P3,T1P4,T1P4,T1P5,T1P5⟩,
⟨T1P1,T1P2,T1P2,T1P2,T1P3,T1P3,T1P4,T1P4,T1P5⟩,
⟨T2P1,T1P2,T1P2,T1P3,T1P4,T1P4,T1P5⟩,
⟨T1P1,T2P1,T2P2,T1P2,T2P3,T1P3,T1P4,T1P4,T1P5,T1P5⟩,
⟨T1P1,T1P1,T1P2,T1P2,T1P3,T1P3,T1P3,T1P4,T1P5⟩,
⟨T1P1,T1P1,T1P2,T1P2,T1P3,T1P3,T1P4,T1P4,T1P5⟩,
⟨T1P1,T1P1,T1P1,T1P2,T1P2,T1P3,T1P3,T1P3,T1P4,T1P5,T1P5⟩,
⟨T1P1,T1P1,T1P2,T1P2,T1P3,T1P3,T1P4,T1P4,T1P5⟩,
⟨T1P1,T1P1,T1P2,T1P2,T1P3,T1P3,T1P4,T1P4⟩},

19



L′2 = {⟨T2P1,T2P1,T2P2,T2P2,T2P3,T2P3,T2P4,T2P4,T2P5,T2P5⟩,
⟨T2P1,T2P1,T2P2,T2P2,T2P3,T2P4,T2P4,T2P5⟩,
⟨T2P1,T2P1,T2P1,T2P1,T2P1,T2P2,T2P2,T2P3,T2P3,T2P4,T2P4,T2P5⟩,
⟨T2P1,T2P1,T1P1,T1P2,T2P2,T2P3,T2P3,T2P4,T2P4,T2P5,T2P5⟩,
⟨T2P1,T2P1,T2P1,T2P2,T2P3,T2P3,T2P4,T2P4,T2P4⟩,
⟨T2P1,T2P1,T2P2,T2P2,T2P3,T2P3,T2P4,T2P4,T2P5,T2P5⟩,
⟨T2P1,T1P1,T2P2,T2P2,T2P3,T2P3,T2P4,T2P5,T2P5,T2P5⟩,
⟨T2P1,T2P2,T2P2,T2P3,T2P4,T2P4,T2P5,T2P5⟩,
⟨T2P1,T2P1,T1P2,T2P2,T2P3,T2P3,T1P4,T2P4,T2P5,T2P5,T2P5⟩,
⟨T1P1,T1P1,T1P2,T1P2,T2P3,T2P3,T2P3,T2P4,T2P4,T2P5⟩}.

Step 2: In this step, we use Directly Follows Miner to discover process models from
all event log obtained in step 1. For instance, using event logs L′1 and L′2, we con-
struct process models M′1 and M′2 shown in Figs. 8 and 9, respectively, representing the
“knowledge” about how target poses T1 and T2 can be reached.
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Figure 8: Process model M′1 discovered from event log L′1.
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Figure 9: Process model M′2 discovered from event log L′2.

Step 3: In this step, we conduct conformance checking to identify discrepancies be-
tween a newly observed trace and the discovered models. Once the GR system receives
a new sequence of sensor data points recorded during a subject’s movement, we use
the trained classifier from step 1 to map the data points to events, resulting in a trace of
events. For illustration purposes, consider we obtain event trace τ′ shown below.

τ′ = ⟨T1P1,T1P1,T2P1,T2P3,T2P3,T2P3,T2P4⟩ .

Note that τ′ is a prefix of an entire trace representing the initial phase of the movement
toward a target pose. The optimal alignments between τ′ and models M′1 and M′2 are
sequences of moves σ′1 and σ′2 shown below.

Step 4: Finally, in the last step, we compute the probabilities that the subject aims to
reach target poses T1 and T2 using the diagnoses of the synchronous and asynchronous
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σ′1 =
τ′ T1P1 T1P1 T2P1 ≫ T2P3 ≫ ≫ T2P3 T2P3 T2P4

M′1 T1P1 T1P1 T2P1 T1P2 T2P3 T1P3 T1P4 ≫ ≫ ≫

σ′2 =
τ′ T1P1 T1P1 ≫ T2P1 T2P3 T2P3 T2P3 T2P4

M′2 T1P1 T1P1 T2P2 ≫ T2P3 T2P3 T2P3 T2P4

moves in the optimal alignments σ′1 and σ′2. Assuming the asynchronous moves with
skips in the model have the cost of one, and using the default parameters for the GR
system, the alignment weights computed following Eq. (1) are 110.75 and 53, respec-
tively. Then, we use Eq. (2) and Eq. (3) to compute the probabilities of the subject
reaching T1 and T2 after observing trace τ′, which are equal to 0.26 and 0.74, respec-
tively. These probabilities indicate that, based on the sensor data, the subject is more
likely to reach target pose T2.

4.2 Goal Recognition Using Linear Discriminant Analysis
Linear Discriminant Analysis (LDA) is used as a baseline approach for prosthetic pose
recognition. This LDA baseline leaves room for improvement. One such improvement
we discuss here. A state-of-the-art method for prosthetic pose recognition trains an
LDA classifier to map input signals to specific event labels [38]. In that approach, the
LDA classifier is trained using data collected while subjects hold their arms in target
poses. As a result, this method may perform poorly when predicting target poses from
signals captured during arm movements toward the target. To improve pose predic-
tion under these conditions, we modify the LDA training phase to incorporate signals
collected during arm movements.

Suppose sensors capture a sequence of 15 data points while a subject moves their
arm to reach a pose and stops at that pose; see Fig. 10. Each data point is a collection
of features. This sequence of data points can be divided into two phases. For instance,
data points 1 through 10 were captured while the arm was moving toward the target
pose, while the last five data points, data points 11 through 15, were collected when the
arm was fixed after reaching the target position. In the work by Yu et al. [38], the LDA
classifier is trained with the last five data points. We adjust their approach by training
the LDA classifier using data points 1 to 10. We refer to this method as dynamic LDA
since it is trained on the data obtained during the movement of the subject, reflecting the
signal patterns during the movement. Consequently, we refer to the original approach
as static LDA, as it is trained on the data collected while the subject is stationary in the
target pose.

Note that there are no customizable parameters in this approach. It is trained using
all data points along the trajectory, and once the subject reaches a target, any remaining
data points are discarded. Both methods, static LDA and dynamic LDA, are used as
baselines for comparison with the PM-based GR techniques.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Train dynamic LDA Train static LDA

A data point: feature 1, feature 2, ......, feature N

Figure 10: A sequence of data points captured by sensors.

5 Evaluation
In this section, we compare the performance of our PM-based GR approaches for rec-
ognizing target poses with three baselines. The experiments are conducted in two set-
tings: offline experiments, as described in Section 2.2.1, and human-in-the-loop (HITL)
experiments, as detailed in Section 2.2.2. In the offline experiments, we evaluate two
PM-based GR approaches presented in Section 4.1 by comparing their performance
with three baselines, namely the LSTM-based approach [13], the static LDA classi-
fier [38], and the dynamic LDA classifier (an improved version of the static LDA ap-
proach described in Section 4.2). In the HITL experiments, we compare the two best-
performing approaches from the offline experiments: the PM-based approach that uses
an LDA classifier to convert sensor data into events and the dynamic LDA classifier.
When compared, the different GR approaches were trained using (possibly different
parts of) data collected during the same arm movements toward target poses.

For convenience, we denote the five evaluated GR approaches as follows:
1. PMclustering denotes the PM-based GR approach that uses clustering to convert sen-

sor data into events;
2. PMclassifier indicates the PM-based GR approach that uses an LDA classifier to con-

vert sensor data into events;
3. LSTM signifies the LSTM-based approach for target pose recognition;
4. sLDA represents the static LDA classifier for target pose recognition; and
5. dLDA denotes the dynamic LDA classifier for target pose recognition.

5.1 Performance Measures
To assess the quality of goal inferences by the evaluated techniques, we use the F1
score and balanced accuracy. These measures are computed based on four terms: True
Positive, True Negative, False Positive, and False Negative. The True Positive (TP)
term denotes the number of correct goals inferred by the GR system. The True Negative
(TN) component is the number of incorrect goals that were not inferred. The False
Positive (FP) term represents the number of incorrect goals inferred by a GR system.
Finally, the False Negative (FN) component refers to the number of correct goals that
were not recognized by the system.

Given the four terms, the F1 score is computed as follows [5]:

F1 =
2 × TP

2 × TP + FP + FN
.
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Balanced accuracy (bacc) is computed as follows [4]:

bacc =
1
2

( TP
TP + FN

+
TN

TN + FP

)
.

The F1 score is also known as the harmonic mean of precision and recall, where
precision is the fraction of the correctly inferred target poses among the total number of
poses that were inferred, and recall is the fraction of the correctly inferred target poses
among the relevant poses. Balanced accuracy is well suited for measuring performance
in imbalanced scenarios, like the case when there is only one true target pose.

Both offline and HITL experiments include multiple GR problem instances, where
a problem instance comprises one attempt to recognize the target pose at some stage
during the movement toward that pose. For each problem instance, we compute F1
score and balanced accuracy, subsequently calculating the averages across all problem
instances for each individual subject.

5.2 Baselines
We compare our PM-based GR approaches with three baselines: the LSTM-based ap-
proach, the static LDA approach, and the dynamic LDA approach.

LSTM neural networks, tailored to recognize dependencies and patterns in sequen-
tial data, have proven exceptionally adept at classifying multi-dimensional, continu-
ous, real-value measurements, such as sEMG and kinematic sensor data. In our experi-
ments, we adopt configurations and hyperparameters outlined in [13] for implementing
the LSTM-based GR baseline.

LDA functions are trainable classifiers that utilize linear decision boundaries to cat-
egorize multi-dimensional, continuous, real-valued data points into predefined clusters.
They are effective in analyzing individual data points, such as sEMG and kinematic
signals, captured at specific moments. For our experiments, we implemented the static
LDA classifier baseline detailed in [37] and the dynamic LDA classifier baseline dis-
cussed in Section 4.2. The static and dynamic LDA classifiers differ in the data that is
used for training. The static LDA classifier is trained on data collected from the arm
being held in target poses, using ten data points from each pose. The dynamic LDA
classifier, however, is trained on data collected during the movement of the arm toward
the target poses, capturing the arm’s motion dynamics.

5.3 Offline Experiments
The offline experiments required collecting both training and testing data together. Ten
subjects (subject IDs 1 to 10) participated in the experiments, completing three tasks.
Each task involved moving their hands to reach one of three target positions: T1, T2,
or T3, as described in Section 2.2.1. Each subject was asked to perform each reaching
task 30 times, resulting in a total of 90 trajectories per subject. These 90 traces included
both training and testing data. We evaluated recognition performance at an individual
level using cross-validation. The 90 trajectories collected for each subject were split
into training and testing sets, with 87 traces used for training three process models, one
model per goal discovered using 29 traces, and the remaining trace used for testing the
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Table 5: Average F1 score and balanced accuracy (bacc) for individual subjects at
different levels of observation (highest in bold).

Subject ID Features Clusters Obs. PMclustering LSTM sLDA dLDA PMclassifier

F1 score bacc F1 score bacc F1 score bacc F1 score bacc F1 score bacc

1 29 70

10% 0.519 0.525 0.356 0.517 0.333 0.500 0.544 0.658 0.533 0.547
30% 0.515 0.567 0.444 0.583 0.344 0.508 0.633 0.725 0.604 0.700
50% 0.570 0.656 0.389 0.542 0.367 0.525 0.689 0.767 0.744 0.808
70% 0.691 0.758 0.544 0.658 0.467 0.600 0.756 0.817 0.796 0.847

2 1 10

10% 0.489 0.497 0.311 0.483 0.333 0.500 0.311 0.483 0.333 0.486
30% 0.504 0.533 0.333 0.500 0.333 0.500 0.444 0.583 0.422 0.561
50% 0.544 0.558 0.333 0.500 0.378 0.533 0.511 0.633 0.519 0.631
70% 0.572 0.589 0.333 0.500 0.422 0.567 0.522 0.642 0.530 0.647

3 2 150

10% 0.491 0.494 0.322 0.492 0.267 0.450 0.344 0.508 0.494 0.506
30% 0.563 0.597 0.356 0.517 0.322 0.492 0.456 0.592 0.528 0.628
50% 0.604 0.678 0.311 0.483 0.367 0.525 0.600 0.700 0.552 0.650
70% 0.652 0.731 0.333 0.500 0.422 0.567 0.567 0.675 0.633 0.714

4 34 50

10% 0.498 0.508 0.444 0.583 0.389 0.542 0.511 0.633 0.467 0.492
30% 0.500 0.533 0.467 0.600 0.344 0.508 0.556 0.667 0.589 0.681
50% 0.519 0.572 0.489 0.617 0.400 0.550 0.500 0.625 0.541 0.639
70% 0.589 0.653 0.511 0.633 0.567 0.675 0.578 0.683 0.622 0.708

5 32 90

10% 0.511 0.531 0.356 0.517 0.244 0.433 0.544 0.658 0.556 0.614
30% 0.617 0.686 0.478 0.608 0.289 0.467 0.522 0.642 0.619 0.700
50% 0.630 0.708 0.400 0.550 0.300 0.475 0.578 0.683 0.604 0.700
70% 0.811 0.858 0.522 0.642 0.556 0.667 0.544 0.658 0.622 0.714

6 28 160

10% 0.483 0.497 0.367 0.525 0.367 0.525 0.400 0.550 0.478 0.528
30% 0.496 0.567 0.378 0.533 0.344 0.508 0.456 0.592 0.511 0.617
50% 0.496 0.592 0.422 0.567 0.378 0.533 0.567 0.675 0.574 0.675
70% 0.600 0.681 0.489 0.617 0.622 0.717 0.589 0.692 0.633 0.725

7 22 80

10% 0.522 0.542 0.367 0.525 0.322 0.492 0.467 0.600 0.528 0.597
30% 0.493 0.550 0.422 0.567 0.344 0.508 0.522 0.642 0.619 0.694
50% 0.520 0.608 0.400 0.550 0.456 0.592 0.733 0.800 0.696 0.769
70% 0.554 0.631 0.400 0.550 0.522 0.642 0.600 0.700 0.704 0.769

8 34 100

10% 0.456 0.489 0.433 0.575 0.300 0.475 0.433 0.575 0.507 0.586
30% 0.494 0.597 0.411 0.558 0.311 0.483 0.644 0.733 0.630 0.717
50% 0.572 0.667 0.511 0.633 0.378 0.533 0.633 0.725 0.719 0.786
70% 0.707 0.781 0.522 0.642 0.589 0.692 0.756 0.817 0.719 0.789

9 23 100

10% 0.498 0.503 0.411 0.558 0.400 0.550 0.500 0.625 0.506 0.519
30% 0.528 0.564 0.356 0.517 0.344 0.508 0.589 0.692 0.557 0.658
50% 0.457 0.542 0.344 0.508 0.367 0.525 0.611 0.708 0.607 0.700
70% 0.467 0.558 0.411 0.558 0.567 0.675 0.678 0.758 0.704 0.778

10 28 170

10% 0.500 0.500 0.467 0.600 0.322 0.492 0.489 0.617 0.467 0.481
30% 0.648 0.714 0.511 0.633 0.378 0.533 0.589 0.692 0.657 0.733
50% 0.733 0.794 0.578 0.683 0.311 0.483 0.700 0.775 0.733 0.792
70% 0.867 0.900 0.656 0.742 0.533 0.650 0.678 0.758 0.711 0.783

Average 0.562 0.613 0.422 0.567 0.390 0.543 0.559 0.669 0.589 0.667
Standard deviation 0.030 0.033 0.026 0.019 0.030 0.023 0.033 0.025 0.032 0.031

GR performance. This procedure was repeated 30 times for each subject, each time
leaving one trace toward each of the three goals for testing.

The key parameters, number of selected features and number of clusters, as men-
tioned in Section 4.1.1, are determined through brute-force search. In the experimental
dataset, which comprises 47 distinct features, we set the selection range for the number
of features (N f ) to any integer from 1 to 47 inclusive. For the number of discrete event
clusters (Nc), we tested values in the set {10, 20, . . . , 200}. To identify the optimal com-
bination of N f and Nc, we systematically evaluated each pair to identify the one that
results in the best F1 score. We then evaluated and compared all the GR techniques,
namely PMclustering, PMclassifier, LSTM, sLDA, and dLDA, using the same set of selected
features. Each approach was implemented and deployed on a cloud server with a sin-
gle core of an Intel® Xeon Processor at 2.0GHz. As GR techniques aim to identify
goals before full sequences of signals are observed, we evaluated the approaches using
prefixes of 10%, 30%, 50%, and 70% of the total number of sensor measurements.

Table 5 displays the average F1 score and balanced accuracy (back) for recognizing
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Table 6: Results of the t-tests for comparing average F1 score.

PMclustering LSTM sLDA dLDA PMclassifier

PMclustering diff diff diff —
LSTM 3.767e-07 diff diff diff
sLDA 6.244e-19 5.593e-14 diff diff
dLDA 2.600e-03 6.741e-04 1.093e-19 —
PMclassifier 1.022e-01 3.437e-05 1.018e-18 1.358e-01

Table 7: Results of the t-tests for comparing average balanced accuracy (bacc).

PMclustering LSTM sLDA dLDA PMclassifier

PMclustering diff diff — —
LSTM 1.458e-02 diff diff —
sLDA 2.442e-10 5.593e-14 diff diff
dLDA 4.579e-01 6.741e-04 1.093e-19 —
PMclassifier 3.397e-01 1.433e-01 1.426e-09 6.183e-01

target poses of each subject. The “Features” and “Clusters” columns show the number
of selected features, N f , and the number of discrete event clusters, Nc, for each subject.
The last row shows the average across all subjects and all levels of observation.

We conducted t-tests to assess the statistical significance of differences in the aver-
age F1 scores and bacc between evaluated GR techniques. The null hypothesis of each
conducted t-test is that there is no significant difference between the average F1 scores
(bacc) of compared techniques. These t-tests, comparing five approaches based on the
two performance measures, yield pairwise p-values, which are listed in Table 6 and
Table 7. The entries below the diagonal in a table (the lower triangular part) show the
p-values for the corresponding compared techniques, while the entries above the diag-
onal indicate whether the two approaches are significantly different from each other. If
the p-value is less than 0.05, we use entry “diff ” to represent that the two approaches
are significantly different (the null hypothesis rejected); otherwise, we use “—” to rep-
resent that they are not significantly different (cannot reject the null hypothesis).10

The PMclassifier technique achieves the highest F1 score, while the dLDA approach
achieves the highest bacc based on the average performance across all subjects. How-
ever, according to the results of the t-test, these two approaches are not significantly
different from each other in the offline experiment setting. In the next section, we use
these two approaches to conduct HITL experiments to compare their performance fur-
ther. Note that the number of selected features varies significantly between individual
subjects. This may be due to unique patterns of muscle and kinematic activity exhib-
ited by each subject when moving their arms, potential difficulties encountered by the
sensors during data collection, or limitations in the brute-force search method used to
find the optimal combination of features and clusters. While the exact cause remains
uncertain, we acknowledge this as an area for further exploration.

10The t-tests use the Šidák correction at a 95% confidence level.
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Table 8: Average F1 score, balanced accuracy (bacc), and task completion time for
subjects using the PMclassifier and dLDA approaches in the HITL experiments.

Subject ID F1 score bacc Time
PMclassifier dLDA PMclassifier dLDA PMclassifier dLDA

11 0.353 0.246 0.630 0.569 9.348 10.793
12 0.287 0.252 0.590 0.573 8.872 8.078
13 0.433 0.286 0.678 0.592 10.948 11.316
14 0.490 0.375 0.709 0.643 8.577 8.778
15 0.559 0.254 0.751 0.573 11.729 25.084
16 0.404 0.271 0.662 0.583 6.986 7.616

Average 0.421 0.281 0.670 0.589 9.410 11.944
Std. dev. 0.097 0.049 0.057 0.028 3.656 21.114
p-value 0.010 0.011 0.196

5.4 Human-In-The-Loop Experiments
The human-in-the-loop (HITL) experiments involved six additional subjects (subject
IDs 11 to 16, none of whom had prior experience with our designed experiment), per-
forming the Refined Clothespin Relocation Task (RCRT) as detailed in Section 2.2.2.
The HITL experiment consists of two phases: the training phase and the testing phase.

Training phase: During training, all sensors were activated to collect signals with 59
features, while the virtual avatar (Fig. 1c) was visible in the VR environment, mirror-
ing the real arm’s movements. The wrist of the subject was constrained using a brace,
only allowing forearm rotation movement. Subjects were instructed to complete all
tasks across ten iterations, with each iteration consisting of eight distinct goals per-
formed only once. All signals collected during this phase were used to train the two
best-performing approaches identified in the offline experiment, namely PMclassifier and
dLDA, as we aimed to compare these approaches in the HITL experiment settings.

Testing phase: During this phase, subjects were requested to use the two trained ap-
proaches to control the virtual prosthesis, see Fig. 2a. For each approach, subjects
were instructed to complete five iterations of the same task as they performed during
the training phase. However, in the testing phase, kinematic sensors below the elbow
joint were deactivated to simulate scenarios of patients with disability. We observed
and collected data to assess whether the “simulated disabled patients” could success-
fully complete the tasks supported by GR techniques. Note that the subjects tested
the PMclassifier and dLDA approaches in random order; half of the cohort began with
PMclassifier, while the rest started with dLDA. This way, we intended to minimize any
learning effects where experience gained from the first approach could improve per-
formance in the second, ensuring a fair comparison. To assess performance, we used
the same performance measures: the F1 score and balanced accuracy. Additionally, we
measured the average time spent by subjects picking up each clothespin and relocating
it using the provided approaches. Note that during HITL experiments, we performed
alignment weight computations in parallel to enhance reaction speeds. While the of-
fline experiments were run on a cloud server, the HITL experiments were performed
on a lab PC with an Intel® Core™ i7-8700K processor at 3.7GHz.

Table 8 summarizes the performance of the PMclassifier dLDA techniques in the

26



HITL experiments. It presents the F1 score, bacc, and the average task completion
time for the six subjects (subject IDs from 11 to 16) achieved by the compared tech-
niques. The third-to-last row, labelled “Average” lists the average F1 score, bacc, and
completion time across the six subjects for each approach, PMclassifier and dLDA. The
second-to-last row, labeled “Std. dev.,” displays the standard deviation for all the mea-
sures across the subjects. The last row, labeled “p-value,” presents the p-values from
the t-tests comparing the average performance of the two approaches, measured for
the F1 score, bacc, and completion time. The results demonstrate that, on average,
across all subjects, PMclassifier outperforms the dLDA baseline significantly in terms of
the F1 score and bacc. Furthermore, subjects utilizing the prosthesis controlled by the
PMclassifier approach completed tasks faster, on average, with a smaller standard de-
viation. This suggests that the PMclassifier approach is not only quicker but also less
sensitive to human variations compared to the dLDA baseline. These findings under-
score the potential of the PMclassifier method in the domain of prosthetics.

6 Discussion
In this work, we present a novel approach for target pose recognition using PM-based
GR to guide powered transhumeral prostheses. Evaluation results demonstrate that
this approach achieves higher goal inference accuracy compared to baseline methods.
Furthermore, HITL experiments confirm the feasibility of applying this approach in
real-world settings, enabling interaction with humans to complete tasks.

Process mining techniques focus on analyzing data sequences with discrete values,
which is a significant limitation because many real-world scenarios involve sequen-
tial data with continuous values, such as the prosthetic scenario studied in this work.
This work explores the potential of continuous signal processing by aiming to trans-
form continuous EMG signals into discrete classes, thereby enabling process mining
techniques to handle continuous data effectively. The central idea in this line of work
involves performing classification before applying process mining. In our previous
work, the K-means clustering was used in offline settings because this technique fo-
cuses on classifying data points without learning criteria for classification. In contrast,
this work introduces the LDA classifier, which learns pre-trained classification criteria,
making it suitable for real-time applications rather than being limited to offline use.

The dynamic LDA (dLDA) introduced in Section 4.2 is an improvement over exist-
ing work on LDA classifiers applied to prosthetic scenarios [38]. In existing works, the
classifier is trained using only final position data and does not utilize the data points col-
lected during movement, which we refer to as static LDA (sLDA). In our conference
paper [32], we introduced the PM-based GR approach with K-means clustering and
demonstrated that it outperformed existing methods, such as sLDA and LSTM. With
the improved LDA classifier, dLDA, we use offline experiments in this paper to show
that dLDA outperforms sLDA, LSTM, and even PM-based GR with K-means clustering.
These results highlight the significance of this improvement.

The main contribution of this work, however, is the new PM-based GR approach
with an LDA classifier (PMclassifier), which is designed to address challenges in the
HITL setting. When evaluating this new approach, we compared it to the dLDA clas-
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sifier, which is the best baseline according to the offline experiment. In the offline
evaluation, see Table 5, PMclassifier generally shows a monotonically increasing trend in
both F1 score and balanced accuracy as more data is collected by the sensors. In con-
trast, dLDA can experience a decrease in performance at certain positions on the way
to the target pose. As a result, PMclassifier typically outperforms dLDA as the movement
trajectory approaches the target, which is desirable in prosthetic applications, as the
target limb pose is crucial for task completion, such as grasping an object.

The results of the HITL experiments demonstrate that PMclassifier outperforms dLDA,
providing evidence of its value and making a substantial contribution to the field of
prosthesis development. PMclassifier demonstrated more consistent completion times
compared to dLDA. PMclassifier also achieved significantly better GR performance in
terms of the F1 score and balanced accuracy (p < 0.05), see Table 8. These findings
highlight the robustness of the PMclassifier approach against human variations in input
signals under HITL conditions, making it well-suited for real-life applications. How-
ever, the GR performance in HITL settings was significantly lower than that observed
in the offline experiments, which is commonly reported in the literature [10]. This high-
lights the inherent challenges of real-time HITL scenarios, which could be addressed
in future work.

Although this work introduces a novel and promising approach for target pose
recognition aimed at guiding powered transhumeral prostheses, several aspects could
be further elaborated. The current feature selection and event discretization approaches,
while effective, leave room for improvement. In future work, we are eager to explore
other feature selection and event discretization techniques. For example, the brute-
force search method, used to determine which features to select and how many clusters
to use for grouping original signals into events, could be replaced with efficient heuris-
tics. In addition, instead of relying on the LDA classifier, one can explore the benefits
of using other machine learning-based classifiers in the PM-based GR approach. Fur-
thermore, the current method for partitioning the trajectory and labeling data points
could be improved, as there is no clear criterion for determining the number of seg-
ments. In this paper, we use five segments for the analysis. Exploring more effective
ways to label data points for training classifiers remains an area for future investigation.
It is interesting to identify feature conditions that describe meaningful prosthetic pos-
tures, and test whether specific sequences of these yield good predictors for the goals
being pursued. Doing so will support one of the key advantages of our PM-based GR
approach, namely, explanations of the obtained goal inferences based on the common-
alities and discrepancies between the process models and the fresh observations on the
level of meaningful patterns of events.

Yet another area for improvement is alignment computation. While the process
discovery technique we used runs in linear time relative to the size of the input event
log [18], the employed alignment technique is in the worst case exponential in the
size of the solution [33]. The practical implications of the complexity of computing
alignments arise when the model describes a large number of reachable states. In such
cases, conformance checking becomes time-consuming. As the number of reachable
states increases, the number of possible alignments to examine and select an optimal
one grows exponentially. For HITL experiments, as goal inferences are required in
(close to) real-time, alignment computation can become a burden. However, if the
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model is not complex, that is, describes a small number of traces, the optimal align-
ment can be computed fast. We observed that discovered models are usually not overly
complex, and hence, the time required to compute optimal alignments is manageable.
For instance, the HITL experiments demonstrate that our approach can perform faster
and more accurately than the baselines. However, addressing the worst-case scenarios
is necessary if considering the technology for production. To this end, one can study the
benefits of using alignment techniques designed for online conformance checking [35]
or such that approximate optimal alignments fast [34]. We conjecture that approxima-
tions of optimal alignments computed in the time that is low polynomial in the sizes of
the inputs can yield a good compromise of goal inference accuracy and runtime guar-
antees. An additional runtime improvement can stem from computing alignments for
different process models in parallel.

The datasets for both offline and HITL experiments are arguably small, with the
offline experiment using an existing dataset of 10 subjects and the HITL experiments
including 6 subjects. The positive outcomes achieved so far encourage expanding the
study to include a larger number of subjects to confirm the results’ generalizability. An-
other aspect worth further exploration is the significant performance gap between the
offline experiments and the HITL experiments. This discrepancy might be due to the
dataset capturing features from forward-reaching tasks using sound limbs rather than
from real-time control of a prosthesis. The difference between real-time prosthetic
states in the HITL experiments and sound limbs introduces variations in feedback,
which could affect the feature patterns collected during movement. These feature pat-
terns can have an impact on the real-time recognition accuracy of machine-learning-
based techniques [24, 36]. Therefore, collecting data from real-time control exper-
iments and pre-defining standard traces toward the goal with distinguishable feature
patterns for training the PM-based GR system has the potential to improve accuracy.
Recent research suggests that when GR performance falls short of expectations, an
adaptive GR system can automatically adjust its model to better fit and perform in cur-
rent scenarios [31]. Using an adaptive GR technique, one could start by learning GR
models from the movements of sound limbs. Then, as subjects collaborate with the
prostheses to perform tasks, the adaptive GR technique can adjust the initially learned
models to improve the HITL recognition performance.

This work highlights the potential of integrating process mining and goal recogni-
tion techniques into prosthetic control systems. By leveraging process models, we can
not only improve recognition accuracy but also provide a more interpretable framework
for understanding and explaining prosthetic behavior. This aligns with recent trends in
adaptive GR systems [31], which aim to adjust models automatically to fit real-world
scenarios better. As the field moves toward more personalized and adaptive prosthetic
systems, our approach offers a promising foundation for future research.

7 Conclusion
This article presents a novel approach for using continuous, real-valued, multi-dimen-
sional sensor data that characterizes the behavior of an observed autonomous agent to
infer their goal using an existing GR system grounded in process mining techniques.
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We evaluate the new approach in a study that aims to recognize the target poses of pa-
tients who use powered transhumeral prostheses. In this setting, the data from surface
electromyography electrodes and kinematic sensors attached to patients is used to in-
fer their intended poses and, subsequently, to guide powered prostheses in supporting
patients’ movements. In addition, we present a new linear discriminant analysis (LDA)
classifier for recognizing target poses trained on the data gathered during the dynamic
movement of the patients (dynamic LDA) that enhances the state-of-the-art LDA ap-
proach trained on the data collected during the fixed static patient’s poses (static LDA).
We use these LDA classifiers to conduct offline and human-in-the-loop experiments.
The results of the experiments demonstrate that GR that relies on LDA classifiers for
event discretization significantly outperforms state-of-the-art baselines.
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